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Abstract
We study a semiphenomenological model introduced by Alicki (2002 Phys.
Rev. A 65 034104), describing environmental decoherence by scattering of a
Brownian particle in a gas environment. For a slightly wider class of models,
we prove that the semigroup describing the dynamics of the Brownian particle
can be approximated by the reduced dynamics arising from a Hamiltonian
interaction between the particle and an infinite fermionic thermal gas reservoir,
provided the scattering process is isotropic.

PACS number: 03.65.Yz

1. Introduction

In the past 20 years environmental decoherence has been the subject of intensive theoretical and
by now also experimental research [1, 2]. It addresses the question why the objects surrounding
us obey the laws of classical physics, despite the fact that our most fundamental physical theory,
quantum theory, when directly applied to these objects, results in contradictions to what is
observed. This is an embarrassing situation, since on the other hand, quantum theory has
seen a remarkable success and an ever increasing range of applicability. Thus, the question
how to reconcile quantum theory with classical physics is a fundamental one, and efforts to
find answers to it persisted from the inception of quantum theory in the 1920s until today.
Although there is still no general consensus how an answer can be achieved, environmental
decoherence is the most promising one and the one most widely discussed.

The answer that the programme of environmental decoherence gives to the question
posed above is that quantum theory is also valid in the macroscopic domain, but that one has to
take into account the fact that macroscopic objects are usually strongly interacting with their
environment, which ultimately leads to a classical behaviour of the system. Thus, classicality
is a dynamically emergent phenomenon due to the interaction of quantum systems with other
quantum systems surrounding them.
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Of particular interest is the question why macroscopic objects always appear localized,
although the most fundamental principle of quantum theory, the superposition principle, allows
macroscopic objects to be in states with no well-defined position. In the simplest situation, the
macroscopic object considered is a massive Brownian particle with no further internal structure
which undergoes scattering with particles of a thermal gas environment; the observable
which becomes classical in this case is its centre-of-mass position. This situation has been
experimentally realized in matter wave interferometry with fullerene molecules, allowing the
observation of progressive decoherence which is due to scattering with background gases
[3]. A number of models have been devised to describe this situation [4–6]. They employ
scattering theory and some simplifying mathematical and physical assumptions, valid for
a certain range of parameters, to derive a Markovian reduced dynamics for the Brownian
particle. Another approach to the problem of obtaining a reduced Markovian dynamics is by
considering a Hamiltonian dynamics for the total system and doing a perturbative calculation,
i.e., performing a Markovian limit as is done at an abstract level in the general theory of
Markovian limits [7]. Such a derivation has been given in [6], however, not in a mathematically
rigorous fashion with an explicit proof of convergence of the reduced dynamics to a Markovian
one.

In this paper we prove, using a singular coupling limit, that the semiphenomenological
model describing localization of a Brownian particle given by Alicki [8] can be approximated
by the reduced dynamics arising from a Hamiltonian interaction between the particle and an
infinite fermionic thermal gas reservoir, the interaction being linear in the field operators of
the gas. We choose a fermionic gas because it admits bounded field operators and thus avoids
mathematical complications in dealing with unbounded operators, e.g., the self-adjointness of
the Hamiltonian and in the proof of theorem 3. The proof is performed for a slightly wider
class of models which contains Alicki’s as a member. Such a derivation is important since
it justifies the assumption of a Markovian time evolution of the Brownian particle, which
is used in many applications, e.g., to interpret experimental data. Moreover, by taking into
account the approximations made it may serve to identify the range of validity of Markovian
approximations.

The paper is organized as follows: in section 2 we present the general mathematical
framework and the class of models we shall work with. Section 3 gathers the necessary results
from the theory of Markovian limits. In section 4 we set up a Hamiltonian model and prove
that its reduced dynamics becomes Markovian in a singular coupling limit, and in section 5
we use this result to show that the dynamics described by a certain class of semigroups can be
approximated by the reduced dynamics of a Hamiltonian interaction.

2. General framework

Let G be a locally compact Hausdorff topological group with unit e, and B0(G) the σ -algebra
of Baire sets in G. Let M (G) be the set of all Baire measures, i.e., of all measures µ on the
measurable space (G,B0(G)) for which µ(K) < ∞ for all compact subsets K ⊆ G. Let
M b(G) denote the set of all bounded measures, M 1(G) the set of all normalized (probability)
measures, and M+(G) the set of all nonnegative measures in M (G). The set of real-
valued continuous functions on G with compact support is denoted by K (G), we define
for µ ∈ M (G) and f ∈ K (G) a dual pairing by 〈µ, f 〉 = ∫

G
f dµ. The weak topology

on M (G) with respect to this pairing is called the vague topology. Let {µt }t�0 ⊆ M 1(G)

be a one-parameter family of Baire measures. It is called a one-parameter convolution
semigroup of Baire measures if µt ∗ µs = µt+s for all t, s � 0 where ∗ denotes convolution,
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[0,∞[ � t �→ µt is continuous in the vague topology on M (G), and µ0 = δe, where δg

denotes the Dirac measure of unit mass concentrated in g ∈ G.
Let H be a Hilbert space and denote by L (H ) the C*-algebra of all bounded

operators, by U(H ) the set of all unitary operators and by T(H ) the Banach space of
all trace class operators on H , endowed with the trace norm ‖·‖1. Let {Tt }t�0 be a
family of bounded operators on T(H ). It is called a strongly continuous semigroup if
[0,∞[ � t �→ Tt (ρ) ∈ T(H ) is continuous for all ρ ∈ T(H ) and if the semigroup property
holds: T0 = 1 and TtTs = Tt+s for all t, s � 0. A strongly continuous semigroup {Tt }t�0

on T(H ) is called a quantum dynamical semigroup if it is completely positive and trace
preserving, i.e., tr[Tt (ρ)] = tr[ρ] for all ρ ∈ T(H ) and t � 0. The time evolution of an
open quantum system is described by a quantum dynamical semigroup if it is Markovian, i.e.,
memory free.

In the following, we fix a strongly continuous unitary representation G � g �→ U(g) ∈
U(H ), i.e., the map g �→ U(g)ψ is continuous for all ψ ∈ H , and U(gh) = U(g)U(h) for
all g, h ∈ G. Then one can prove the following theorem [9].

Theorem 1. Let {µt }t�0 ⊆ M 1(G) be a one-parameter convolution semigroup of Baire
probability measures. If we define the operators Tt by

T(H ) � ρ �→ Tt (ρ) =
∫

G

U(g)ρU(g−1) dµt(g), t � 0, (1)

then {Tt }t�0 is a quantum dynamical semigroup on T(H ).

Let µ ∈ M 1(G) and α > 0. Consider the family {µt }t�0 of Baire probability measures
defined by

µt = e−αt

∞∑
n=0

(αt)n

n!
µ∗n, t � 0, (2)

where µ∗n = µ ∗ · · · ∗ µ (n times) and µ0 = δe. The sum converges in the vague topology
and defines a one-parameter convolution semigroup [9], called the Poisson process on G. Let
{Tt }t�0 be the associated quantum dynamical semigroup given by (1). It is easy to show that
it is of the form Tt (ρ) = eLDt ρ with the bounded generator

LD(ρ) = α

∫
G

(U(g)ρU(g−1) − ρ) dµ(g), ρ ∈ T(H ). (3)

Semigroups with generators of the form (3) will be the subject of this paper. In particular, if
we take H = L2(R3) and if we choose G as the additive group of R

3, the representation U
as U(k) = e−ikx̂ where k ∈ R

3 and x̂ is the position operator on H , and the measure µ as
nλ, which is the Lebesgue measure multiplied by a positive, continuous and integrable weight
function n : R

3 −→ R>0 such that
∫

R
3 n(k) dk = 1, then the generator (3) takes the form

LD(ρ) = α

∫
R

3
n(k)(e−ikx̂ρ eikx̂ − ρ) dk, (4)

which is the dissipative part of the generator of Alicki’s semiphenomenological model [8].
The total generator is then given by L(ρ) = −i[H, ρ]+LD(ρ), where ρ ∈ dom[H, ·] ⊆ T(H )

and H = p̂2/2m + V (x̂) is the Hamiltonian of the Brownian particle in a potential V .

3. Markovian limits

If we consider the reduced dynamics of a quantum open system S interacting with its
environment E, we will find in general a non-Markovian behaviour of the system due to
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the presence of memory effects. However, in certain cases the reduced dynamics obtained by
tracing over the degrees of freedom of E may be approximated by a Markovian one in such
a way that the approximation becomes exact in a certain limit. This approximation may be
achieved by introducing an appropriate scaling parameter λ in the total Hamiltonian Hλ of
the joint quantum system with Hilbert space H = HS ⊗ HE, and showing that the reduced
dynamics tends to a Markovian one (in an appropriate sense) if we take λ → 0. We will
employ the singular coupling limit [10] and use the abstract framework of Markovian limits
introduced by Davies [11], see also [7].

Let X be a Banach space and P0 a projection on X with ‖P0‖ = 1, we put P1 = 1 − P0

and define X0 = P0X and X1 = P1X, so that X = X0 ⊕ X1. Suppose that we are given a
strongly continuous isometric one-parameter group {Ut }t∈R on X with generator Z and assume
that [Ut, P0] = 0 for all t ∈ R. We define Zi = PiZ = ZPi with domain dom Zi = dom Z

for i = 0, 1. Consequently we have Z = Z0 + Z1. Let A be a bounded operator on X and put
Aij = PiAPj for i, j = 0, 1, we will assume that A00 = 0 throughout. We now introduce the
scaling appropriate for the singular coupling limit: let λ > 0 and define the operator

Zλ = Z0 + λ−2Z1 + λ−1A. (5)

Note that since A is bounded, by the bounded perturbation theorem Zλ is the generator of a
group

{
Uλ

t

}
t∈R

of isometries on X, which describes in physical applications the dynamics of
the joint system; the reduced dynamics on X0 is given by

{
P0U

λ
t P0

}
t∈R

, which is, in general,
not Markovian, i.e., not a semigroup. If one defines the operator K(λ, t) on X by

K(λ, t)x =
∫ λ−2t

0
e−λ2Z0sA01 exp((Z1 + λA11)s)A10x ds, x ∈ X, (6)

one can prove the following approximation theorem, which is the basis for all further
developments.

Theorem 2. Suppose that for every t0 � 0 there is a constant C � 0, such that if |λ| < 1 we
have

sup
0�t�t0

‖K(λ, t)‖ � C. (7)

Furthermore, suppose there exists a bounded operator K ∈ L (X0) such that for all x ∈ X0

we have

lim
λ→0

sup
0�t�t0

‖(K(λ, t) − K)x‖ = 0. (8)

Then it follows that

lim
λ→0

sup
0�t�t0

‖(P0 exp((Z0 + λ−2Z1 + λ−1A)t)P0 − exp((Z0 + K)t))x‖ = 0 (9)

for all x ∈ X0.

For a proof of this theorem see [12]. It is similar to theorem 5.18 of [13], but with the difference
that it admits the weaker assumption (8), which can be verified in the singular coupling limit
even if Z0 is unbounded (see also [10]). The operator K in the preceding theorem turns out to
be given by

K(x) =
∫ ∞

0
A01 eZ1sA10x ds =

∫ ∞

0
P0A eZ1sAP0x ds, x ∈ X0. (10)

Note that the limit semigroup {exp((Z0 + K)t)}t�0 on X0 in (9) is indeed a semigroup by the
bounded perturbation theorem. Moreover, if X is a Banach algebra, exp((Z0 + K)t) is positive,
since by (9) it is the strong limit of the positive reduced dynamics.



Alicki’s model of scattering-induced decoherence derived from Hamiltonian dynamics 8715

4. Discrete model

We will now put the abstract framework of sections 2 and 3 to work and introduce a Hamiltonian
model which yields in the singular coupling limit a reduced dynamics whose dissipative part
is a discrete version of (3). We will use the notation of the previous sections.

Let HS be the Hilbert space of the Brownian particle with Hamiltonian HS, its
configuration space is a locally compact Hausdorff topological group G. Its environment
consists of an infinite thermal gas of noninteracting fermions. We employ the algebraic
framework of quantum statistical mechanics [14] in which this system is described by the
algebra of the canonical anticommutation relations A(h) over the one-particle Hilbert space
h = L2(R3), generated by the bounded creation and annihilation operators a∗

F(f ), aF(f ), f ∈
h, e.g., those of the Fock representation, which obey the canonical anticommutation relations.
Since the particles are noninteracting, their one-particle Hamiltonian is given by H = −� on h,
inducing a time evolution given by a strongly continuous one-parameter group of Bogoliubov
transformations {τt }t∈R on A(h), defined by τt (aF(f )) = aF(eitH f ). The thermal equilibrium
state is the unique KMS state ω with respect to {τt }t∈R and inverse temperature β > 0, which
is quasi free and gauge invariant, and uniquely determined by its two-point function

ω(a∗
F(f )aF(g)) = 〈g|e−βH (1 + e−βH )−1f 〉 =

∫
R

3
ĝ(p)f̂ (p)

e−βp2

1 + e−βp2 dp, (11)

with f, g ∈ h, and f̂ , ĝ denote the Fourier transforms of f and g. Let π : A(h) −→ L (HE) be
the GNS representation [14] of A(h) on HE with respect to ω with cyclic vector � ∈ HE, i.e.,
ω(x) = 〈�|π(x)�〉 for all x ∈ A(h). We write ρ� = |�〉〈�| and 〈
〉 = 〈�|
�〉 = tr[
ρ�]
for operators 
 on HE. By virtue of {τt }t∈R and π , the time evolution on HE is given by
a strongly continuous unitary group

{
UE

t

}
t∈R

such that
[
UE

t , ρ�

] = 0 for all t ∈ R, i.e., its
generator iHE satisfies HE� = 0. Since ω is locally normal, HE is separable. The Hilbert
space of the joint system is H = HS ⊗ HE, and the total free Hamiltonian is the essentially
self-adjoint operator H0 = HS ⊗ 1 + 1 ⊗ HE.

We now define a linear interaction between the system S and the environment E. It is
given by the bounded self-adjoint Hamilton operator

HI =
∑
k∈M

ck(U
∗(σ (k)) ⊗ a∗(fk) + U(σ(k)) ⊗ a(fk)). (12)

Here U is a strongly continuous unitary representation of G on HS as in section 2, {fk}k∈Z

is a sequence of test functions in h to be defined below, M ⊆ Z is a subset such that k ∈ M

implies −k ∈ M and σ : M −→ G is a map such that σ(−k) = (σ (k))−1 for all k ∈ M .
The sequence {ck}k∈M ⊆ R�0 with ck = c−k ensures convergence of (12), we choose it such
that

∑
k∈M ck < ∞ and

∑
k∈M c2

k < ∞. Note that U ∗(σ (k)) = U(σ(−k)). Finally, the
creation and annihilation operators a∗(f ), a(f ) are those of the representation π , acting on
HE. Interaction (12) couples U(σ(k)) on HS with the creation/annihilation operator a#(fk).
The total Hamiltonian of the joint system is the essentially self-adjoint operator Htot = H0 +HI.

To complete the description of our model, we still have to choose the sequence of test
functions {fk}k∈Z. We assume that ‖fk‖ � 1 for all k ∈ Z, and we require that fk and f� have
disjoint energy spectra if k 
= �, that is (δk,� denotes the Kronecker symbol)

ω(a∗
F(fk)τt (aF(f�))) = 〈a∗(fk)a(eitH f�)〉 =

∫
R

3
f̂ �(p)f̂ k(p)

e−βp2

1 + e−βp2 eitp2
dp = δk,�hk(t),

(13)

where we have used (11). Then it follows that for all k, � ∈ Z

δk,�hk(t) = 〈a∗(fk)a(eitH f�)〉, δk,�h̃k(t) = 〈a(fk)a
∗(eitH f�)〉, (14)
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δk,�hk(t) = 〈a∗(eitH fk)a(f�)〉, δk,�h̃k(t) = 〈a(eitH fk)a
∗(f�)〉, (15)

where hk(t) = 〈
a∗(fk)a

(
eitH
k

)〉
and h̃k(t) = 〈a(fk)a

∗(eitH fk)〉. Note that we have hk(t) =
h̄k(−t). Moreover, hk(t), h̃k(t) are bounded functions, and hk(t), h̃k(t) = O(t−3) under
suitable regularity assumptions, e.g., fk ∈ S (R3). In the following, we will assume that
hk = h−k and h̃k = h̃−k by a suitable choice of the fk , e.g., f̂ k(p) = f̂ −k(−p) for all p ∈ R

3

and supp f̂ k ∩ supp f̂ � = ∅ if k 
= �. This choice of {fk}k∈Z, and of M and σ takes account
of the isotropy of the scattering process.

We now make the connection to section 3. We take X = T(H ) and define the projection
of norm 1 P0 = ι ◦ trE, where ι : T(HS) −→ T(H ) with ρ �→ ι(ρ) = ρ ⊗ ρ� is the inclusion
of T(HS) in T(H ) and trE : T(H ) −→ T(HS) is the partial trace with respect to E. Then
X0 = P0X ∼= T(HS). We define the unbounded derivation Z = −i[H0, ·] and the bounded
derivation A = −i[HI, ·]. Because

[
UE

t , ρ�

] = 0, it follows that [Ut, P0] = 0 for all t ∈ R,
remember that Ut = eZt . Since 〈a#(f )〉 = 0 for all f ∈ h it follows that A00 = 0.

Next we calculate the explicit form of the operator K in (10). For all ρ ∈ T(HS), we have

K(ρ) = −
∫ ∞

0
P0[HI, [HI(s), ρ ⊗ ρ�]] ds, (16)

where HI(s) = eisHEHI e−isHE . Inserting (12) and remembering the definition of P0 yields

K(ρ) = −
∫ ∞

0

∑
k,�∈M

ckc�{+U(σ(k))U ∗(σ (�))ρ tr[a∗(fk)a(eitH f�)ρ�]

+ U ∗(σ (k))U(σ(�))ρ tr[a(fk)a
∗(eitH f�)ρ�]

−U(σ(k))ρU ∗(σ (�)) tr[a∗(fk)ρ�a(eitH f�)]

−U ∗(σ (k))ρU(σ(�)) tr[a(fk)ρ�a∗(eitH f�)]

−U(σ(�))ρU ∗(σ (k)) tr[a∗(eitH f�)ρ�a(fk)]

−U ∗(σ (�))ρU(σ(k)) tr[a(eitH f�)ρ�a∗(fk)]

+ ρU(σ(�))U ∗(σ (k)) tr[ρ�a∗(eitH f�)a(fk)]

+ ρU ∗(σ (�))U(σ(k)) tr[ρ�a(eitH f�)a
∗(fk)]} dt

by noting that trE[ρ1 ⊗ 
ρ�] = ρ1 tr[
ρ�] for ρ1 ∈ T(HS) and 
 ∈ L (HE). Using (14) and
(15) we arrive at

K(ρ) =
∑
k∈M

c2
kdk(U

∗(σ (k))ρU(σ(k)) − ρ), (17)

where

dk =
∫ ∞

0
(h−k(t) + h̃k(t) + h−k(t) + h̃k(t)) dt, k ∈ M. (18)

Note that dk ∈ R and dk = d−k for all k ∈ M . We assume that the sequence {dk}k∈M is
bounded (see below), in this case the series in (17) converges uniformly. Furthermore, for an
integrable function f with f (t) = f̄ (−t) we have∫ ∞

0
eixtf (t) dt = 1

2
f̂ (x) + is(x), s(x) = Im

∫ ∞

0
eixtf (t) dt, x ∈ R, (19)

so that we can write dk = 2 Re
∫ ∞

0 h−k(t) dt + 2 Re
∫ ∞

0 h̃k(t) dt = ĥ−k(0) + ˆ̃hk(0). Since
hk and h̃k are of positive type, i.e.,

∑n
i,j=1 z̄izjhk(tj − ti) � 0 for all zi ∈ C, ti ∈ R, i =

1, . . . , n, n ∈ N, it follows by Bochner’s theorem that ĥk(x), ˆ̃hk(x) � 0 for all x ∈ R, this



Alicki’s model of scattering-induced decoherence derived from Hamiltonian dynamics 8717

shows that dk � 0 for all k ∈ M . If we put now nk = c2
kdk � 0 for k ∈ M , we can write the

generator of the semigroup {exp((Z0 + K)t)}t�0 in (9) as

L(ρ) = −i[HS, ρ] +
∑
k∈M

nk(U
∗(σ (k))ρU(σ(k)) − ρ), ρ ∈ dom[HS, ·], (20)

with nk = n−k for all k ∈ M . This generator determines the reduced Markovian dynamics of
our discrete model, obtained in the singular coupling limit.

Our next task is the verification of the assumptions (7) and (8) of theorem 2 to obtain the
convergence of the reduced dynamics to the semigroup generated by (20). To do so, we have
to put additional constraints on the sequence of test functions {fk}k∈Z.

Theorem 3. Assume that there exists an integrable function h on R, such that for all t1, t2 ∈ R

and all k, � ∈ Z we have

|〈a#(eit1H fk)a
#(eit2Hf�)〉| � h(t1 − t2). (21)

Moreover, assume that there exists ε > 0 such that h satisfies∫ ∞

0
|h(t)|(1 + t)ε dt < ∞. (22)

Then the assumptions (7) and (8) of theorem 2 are satisfied.

For a proof see [12]. The somewhat lengthy proof of theorem 3 follows—with minor changes
since interaction (12) is linear in the field operators—similar lines as that in [11], so we do not
reproduce it here. In the following, we will assume throughout that the test functions {fk}k∈Z

satisfy the assumptions (21) and (22) of theorem 3.

Corollary 1. With the notation and definitions as above it follows that

lim
λ→0

P0U
λ
t P0ρ = lim

λ→0
trE[exp((Z0 + λ−2Z1 + λ−1A)t)ρ ⊗ ρ�] = eLtρ (23)

uniformly on compact time intervals and for all ρ ∈ T(HS), where L is given by (20).

Finally we note the following simple fact, which will be used in the next section. A
measure µ ∈ M (G) is called discrete if it is of the form µ = ∑n

i=1 aiδgi
, with g1, . . . ,

gn ∈ G and a1, . . . , an ∈ R. Thus, we see that L in (20) can be written as Lµ(ρ) =
−i[HS, ρ] +

∫
G
(U(g)ρU(g−1) − ρ) dµ(g) with a discrete measure µ ∈ M+(G). By our

choice of M, σ and the test functions this measure has the property that µ(B) = µ(T (B))

for all B ∈ B0(G), which we denote by µ = µ ◦ T , where T : G −→ G is defined by
g �→ T (g) = g−1; as mentioned before, this property expresses the isotropy of the scattering
process.

Corollary 2. Let µ ∈ M+(G) be a discrete measure with µ = µ ◦ T , i.e., of the form µ =∑
k∈M akδσ(k) with ak � 0, ak = a−k for all k ∈ M , where M ⊆ Z and σ are as

above. Let HI(µ) be the Hamiltonian defined by (12), i.e., HI(µ) = ∑
k∈M ck(U

∗(σ (k)) ⊗
a∗(fk) + U(σ(k)) ⊗ a(fk)) with ck = √

ak/dk . Let
{
P0U

λ
t (µ)P0

}
t∈R

be the reduced
dynamics with respect to the interaction Hamiltonian HI(µ), i.e., we have Uλ

t (µ) =
exp((Z0 + λ−2Z1 + λ−1A(µ))t) and A(µ) = −i[HI(µ), ·]. Then it follows that

lim
λ→0

P0U
λ
t (µ)P0ρ = eLµtρ, (24)

uniformly on compact time intervals and for all ρ ∈ T(HS), and with

Lµ(ρ) = −i[HS, ρ] +
∫

G

(U(g)ρU(g−1) − ρ) dµ(g), ρ ∈ dom[HS, ·]. (25)
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5. General case

We now generalize the considerations of the preceding section and show that models with
a reduced dynamics described by (20), with the sum replaced by an integral with respect to
a measure µ ∈ M b

+ (G) which satisfies µ = µ ◦ T , can be approximated by the reduced
dynamics of a Hamiltonian model with an interaction of the form (12). We start with two
lemmas.

Lemma 1. Let X be a Banach space and f : G −→ X be a bounded and norm continuous
function. Assume that {µn}n∈N ⊆ M 1

+ (G) is a sequence which converges to µ ∈ M 1
+ (G) in

the vague topology. Then
∥∥∫

G
f dµn − ∫

G
f dµ

∥∥ → 0 as n → ∞.

Proof. Let ε > 0. Since {µn}n∈N ∪ {µ} is compact in both vague and weak topology, and G is
Hausdorff, it follows from théorème 2, chapter IX, section 5 of [15] that there is a compact set
K ⊆ G such that µn(G\K),µ(G\K) < ε for all n ∈ N. From the corollary of proposition 9,
chapter III, section 3 of [15] it follows that µ �→ ∫

K
f dµ is continuous in the vague topology

on vaguely bounded sets, hence
∥∥∫

K
f dµn−∫

K
f dµ

∥∥ < ε for n sufficiently large. Therefore,
we have∥∥∥∥
∫

G

f dµn −
∫

G

f dµ

∥∥∥∥ �
∥∥∥∥
∫

K

f dµn −
∫

K

f dµ

∥∥∥∥
+

∥∥∥∥
∫

G\K
f dµn −

∫
G\K

f dµ

∥∥∥∥ < ε(1 + 2‖f ‖∞),

and the lemma follows. �

Lemma 2. Let µ ∈ M 1
+ (G) with µ = µ ◦ T . Then there is a sequence {µn}n∈N ⊆ M 1

+ (G) of
discrete measures with µn = µn ◦ T , such that µn → µ as n → ∞ in the vague topology.

Proof. Since the discrete measures are dense in M 1
+ (G) with respect to the vague topology,

there is a sequence {νn}n∈N of discrete probability measures with νn → µ vaguely. Define
µn = 1

2 (νn + νn ◦ T ). Then µn = µn ◦ T for all n ∈ N, and µn → µ vaguely. �

Now let µ ∈ M 1
+ (G) with µ = µ◦T and α > 0. We consider a Markovian time evolution

on T(HS) generated by

Lµ(ρ) = −i[HS, ρ] + α

∫
G

(U(g)ρU(g−1) − ρ) dµ(g), ρ ∈ dom[HS, ·], (26)

describing an isotropic scattering process. We show that the semigroup generated by (26)
can be approximated by the reduced dynamics of a Hamiltonian model. According to
lemma 2 there is a sequence {µn}n∈N ⊆ M 1

+ (G) with µn = µn ◦T such that µn → µ vaguely.
For n fixed we consider the Hamiltonian HI(µn) defined in corollary 2. From (24) we have,
for ε > 0 and sufficiently small λ,

∥∥P0U
λ
t (µn)P0ρ − eLµn tρ

∥∥
1 < ε for all t in a compact

interval. Next we note that g �→ Vg(ρ) := U(g)ρU(g−1) is norm continuous since V is a
weakly continuous representation of G on the Banach space T(HS). Therefore, it follows from
lemma 1 that Lµn

(ρ) → Lµ(ρ) as n → ∞ for all ρ ∈ dom Lµ = dom Lµn
= dom[HS, ·],

which is dense in T(HS), Lµ is given by (26). The Trotter–Kato theorem now implies
eLµn tρ → eLµtρ for all ρ ∈ T(HS) uniformly for t in compact intervals. Thus,
‖eLµn tρ − eLµtρ‖1 < ε for n sufficiently large, and we have∥∥P0U

λ
t (µn)P0ρ − eLµtρ

∥∥
1 �

∥∥P0U
λ
t (µn)P0ρ − eLµn tρ

∥∥
1 + ‖eLµn tρ − eLµtρ‖1 < 2ε (27)
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for all t in a compact interval, n sufficiently large and λ sufficiently small. This proves the
following theorem.

Theorem 4. Let µ ∈ M 1
+ (G) be a measure with µ = µ ◦ T , and consider the generator Lµ

given by (26), describing an isotropic scattering process. Then for every t0 � 0, ρ ∈ T(HS)

and ε > 0, there exists a Hamiltonian HI of the form (12), and λ0 > 0 such that for the
reduced dynamics

{
P0U

λ
t P0

}
i∈R

with respect to the interaction Hamiltonian HI, i.e., with
Uλ

t = e((Z0 + λ−2Z1 + λ−1A)t), A = −i[HI, ·], we have∥∥P0U
λ
t P0ρ − eLµtρ

∥∥
1 < ε, for all t ∈ [0, t0] (28)

if 0 < λ < λ0.

In particular, this theorem shows that the semigroup of Alicki’s model, generated by (4), can
be approximated by the reduced dynamics of a Hamiltonian interaction between the system
S and environment E, provided the scattering process is isotropic, i.e., n(k) = n(|k|) for all
k ∈ R

3. In this case it follows that µ = nλ satisfies µ = µ ◦ T , and theorem 4 applies.
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